Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 942-954, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222560

RESUMO

To understand the effects of additives on the performance of a Ni-Co-P alloy electroplated coating, this study, based on a single-factor experiment, utilized a Box-Behnken experimental design to optimize an additive that can enhance the electrodeposited Ni-Co-P alloy coating's properties, including hardness, glossiness, and corrosion resistance. The study used tools such as a gloss meter, a Vickers hardness tester, and an electrochemical workstation to analyze the impact of different additives on the coating's hardness and gloss. The optimal additive combination was determined. The results from the Box-Behnken experiment showed that when the concentrations of sodium dodecyl sulfate, thiourea, and sodium allyl sulfonate reached 0.10, 0.15, and 0.22 g/L, respectively, the resulting coating hardness was 475.4 HV0.5, and the gloss level was 463.4 GU. Compared to the coatings without additives, the hardness increased by 90.34 HV0.5, and the glossiness rose by 101.2 GU. The coating's corrosion resistance also improved. This enhancement is attributed to the compounded additive, which significantly improved the surface morphology of the coating, making it smoother and more compact. The morphology and composition of the coatings with additives were analyzed through scanning electron microscopy and energy dispersive X-ray spectroscopy, and the composition of the coating contains 71.01 at % Ni, 20.65 at % Co, and 8.34 at % P. At the same time, the optimized coating exhibits a metallic luster similar to stainless steel, meeting industrial requirements.

2.
Materials (Basel) ; 16(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297061

RESUMO

In order to improve the conversion and transmission efficiency of the photoelectron, core-shell spheroid structure titanium dioxide/cadmium sulfide (TiO2/CdS) composites were synthesized as epoxy-based coating fillers using a simple hydrothermal method. The electrochemical performance of photocathodic protection for the epoxy-based composite coating was analyzed by coating it on the Q235 carbon steel surface. The results show that the epoxy-based composite coating possesses a significant photoelectrochemical property with a photocurrent density of 0.0421 A/cm2 and corrosion potential of -0.724 V. Importantly, the modified composite coating can extend absorption in the visible region and effectively separate photoelectron hole pairs to improve the photoelectrochemical performance synergistically, because CdS can be regarded as a sensitizer to be introduced into TiO2 to form a heterojunction system. The mechanism of photocathodic protection is attributed to the potential energy difference between Fermi energy and excitation level, which leads to the system obtaining higher electric field strength at the heterostructure interface, thus driving electrons directly into the surface of Q235 carbon steel (Q235 CS). Moreover, the photocathodic protection mechanism of the epoxy-based composite coating for Q235 CS is investigated in this paper.

3.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903126

RESUMO

This work demonstrated a workable approach for the synthesis of a re-healing polyaniline-modified epoxy resin coating material via photopolymerization. The prepared coating material exhibited low water absorption, allowing it to be used as an anti-corrosion protective layer for carbon steel. First, graphene oxide (GO) was synthesized through the modified Hummers' method. It was then mixed with TiO2 to extend its light response range. The structural features of the coating material were identified using scanning electron microscopy (SEM), X ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT IR). The corrosion behavior of the coatings and the pure resin layer were tested by using electrochemical impedance spectroscopy (EIS) and the potentiodynamic polarization curve (Tafel). The presence of TiO2 reduced the corrosion potential (Ecorr) toward lower values in 3.5% NaCl at room temperature, which was due to the photocathode of titanium dioxide. The experimental results indicated that GO was successfully compounded with TiO2 and that GO effectively improved the light utilization capacity of TiO2. The experiments showed that the presence of local impurities or defects can reduce the band gap energy, resulting in a lower Eg for the 2GO:1TiO2 composite (2.95 eV) compared to that of TiO2 alone (3.37 eV). After applying visible light to the coating surface, the change in the Ecorr value of the V-composite coating was 993 mV and the value of Icorr decreased to 1.993 × 10-6 A/cm2. The calculated results showed that the protection efficiency of the D-composite and V-composite coatings on composite substrates was approximately 73.5 and 83.3%, respectively. More analyses revealed that under visible light, the coating had better corrosion resistance. This coating material is expected to be a candidate for carbon steel corrosion protection.

4.
Phys Chem Chem Phys ; 25(1): 232-240, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36511642

RESUMO

Two-dimensional (2D) semiconductors with excellent electronic and optical properties provide a great prospect for the fundamental research and application for the next-generation devices. Exploring the contact properties between 2D semiconductors and metal electrodes for improving the performance of nanodevices is of utmost importance. Motivated by the successful synthesis of bulk ScSI experimentally in a recent work [A. M. Ferrenti, M. A. Siegler, S. Gao, N. Ng and T. M. McQueen, Chem. Mater., 2022, 34, 12, 5443-5451], here we systematically investigate the intrinsic structural, electronic and optical properties of the novel monolayer ScSX (X = I, Br, and Cl) and their interfacial contact properties with the metal electrode of borophene using first-principles calculations. Interestingly, halogen X atoms with different electronegativities not only influence the intrinsic properties of monolayer ScSX, but also affect the interlayer coupling between monolayer ScSX and metallic borophene. The ScSI/borophene heterostructure forms a p-type Schottky contact, while both ScSBr/borophene and ScSCl/borophene heterostructures form a n-type Schottky contact. Moreover, our calculations demonstrate that strain engineering and applying an external electric field are effective strategies to regulate the Schottky barrier and contact types at the interface of ScSX/borophene. These findings provide a very promising path for designing tunable Schottky nanodevices with high-performance based on monolayer ScSX.

5.
Materials (Basel) ; 14(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069811

RESUMO

In this work, a ternary TiO2/Graphene oxide/Polyaniline (TiO2/GO/PANI) nanocomposite was synthesized by in situ oxidation and use as a filler on epoxy resin (TiO2/GO/PANI/EP), a bifunctional in situ protective coating has been developed and reinforced the Q235 carbon steel protection against corrosion. The structure and optical properties of the obtained composites are characterized by XRD, FTIR, and UV-vis. Compared to bare TiO2 and bare Q235, the TiO2/GO/PANI/EP coating exhibited prominent photoelectrochemical properties, such as the photocurrent density increased 0.06 A/cm2 and the corrosion potential shifted from -651 mV to -851 mV, respectively. The results show that the TiO2/GO/PANI nanocomposite has an extended light absorption range and the effective separation of electron-hole pairs improves the photoelectrochemical performance, and also provides cathodic protection to Q235 steel under dark conditions. The TiO2/GO/PANI/EP coating can isolate the Q235 steel from the external corrosive environment, and may generally be regarded a useful protective barrier coating to metallic materials. When the TiO2/GO/PANI composite is dispersed in the EP, the compactness of the coating is improved and the protective barrier effect is enhanced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...